

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

Technical Requirements Document
for Project “IT-RAYS website Page Builder”

Presented to IT-RAYS

Project Name IT-RAYS Page Builder Technical Requirements

Document Number IRTRD001

Document Type Technical Requirements

Date 11-July-2025

Version 1.0.0

Prepared By Mohamed Montaser (CEO)

Project Overview

This document outlines the core technical requirements for the development of the

Page Builder application. It defines the technology stack, architectural patterns, coding

standards, development practices, and deployment considerations for both the Next.js

frontend and Laravel/MySQL backend. Adherence to these guidelines is mandatory for

all development team members to ensure a cohesive, high-quality, scalable, and

maintainable product.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

1. IT-RAYS
• About IT-RAYS:

A company where you can find every beautiful mind and talented resource. We

specialize in helping other developers make it easier to code and to live. We

provide several services free of charge Web Services for many things on the web

passing through Web and Mobile applications development with the best

existing User Experience and ending to Creating hand-crafted WordPress themes

on Envato marketplace. We also provide custom solutions on a large scale for

corporate levels. Our products have the highest level of Quality ever existing.

• IT-RAYS History:

IT-RAYS was established in 2012 and believe in changing the world to go better.

The company originally worked all over the world and has established many

successful projects in the Middle East and the globe.

The owner of the company has more than 19 years of experience in the IT sector

and has led many businesses to grow exponentially. He believes that the open

market is the key value that can take you to the remarkable success as well as

the worldwide popularity.

• IT-RAYS Vision:

We believe that we can deliver a value to all our customers in a way that really

matches every client’s needs. Not only delivering a value but also a high-quality

value in the key value for our success stories. This we believe can make

everyone’s life better by changing the quality of services for every client to the

highest level.

• IT-RAYS Services:

We provide many services on the market, below are some examples of the

service (but not limited to)

1- Custom professional software solutions.

2- User experience, UX review and UX design.

3- Hand-crafted unique WordPress themes.

4- Mobile applications development.

5- Website and Web Portals development.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

2. Summary

Why use Our Custom Framework?

Unlike many providers that simply offer standard Laravel PHP solutions, we dive deep

into the core of Laravel to craft exceptional, elegant software that elevates the

customer's needs and provide unique, stable, and secure software for our customers in

one place.

Our dedication to quality and innovation has resulted in software that is not only just

functional as per customer requirements, but also highly dynamic, re-usable systems

and our commitment to excellence has made our products top-level. With a focus on

customization, performance, and responsive design, we go the extra mile to ensure that

our software meets the diverse needs of our clients, setting their websites apart in a

crowded online space.

Objectives:

• Create a modern, visually appealing website to promote the IT-RAYS using the

latest trends and standards.

• Ensure ease of use for both administrators (through CMS dashboard) and end-

users (visitors through Frontend).

• Incorporate a responsive design for seamless accessibility across devices

(desktop, mobile, tablet, etc..).

• Ensure multilingual support (Arabic & English) with a potential for further

language expansion.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

3. Frontend Technical Requirements (Next.js)

3.1. Core Stack & Libraries

• Framework: Next.js (LTS version, latest stable v15.x.x)

• Language: TypeScript.

• Package Manager: npm

• UI Library (Optional): None initially, focus on custom components. Consider

using (e.g., rSuite, shadcn) for accessibility and styled components if needed

later.

• Styling: Tailwind CSS (v4.x.x) with PostCSS and Autoprefixer. Utilize

tailwind.config.js for custom themes, colors, and design tokens.

• State Management:

o Local Component State: useState, useReducer

o Global Client State: React Context API for simple global states (e.g.,

theme, authentication status). For more complex scenarios, consider

Zustand as an example.

o Server State/Data Fetching: React Query (TanStack Query v5.x.x) for

data fetching, caching, invalidation, and synchronization.

• Form Handling: React Hook Form (v7.x.x) for performance and flexible form

management.

3.2. Project Structure

• Root Layout: Utilize Next.js 15+ App Router for structured routing (/{slug}).

• Component Organization:

o /builder/elements: Reusable UI components (e.g., Button.tsx,

Modal.tsx)

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

o /hooks: Custom React hooks.

o /utils: Utility functions.

o /lib: External library integrations or API clients.

o /styles: Global styles or Tailwind base configuration.

• Naming Conventions: PascalCase for components, camelCase for

variables/functions, kebab-case for CSS classes (handled by Tailwind).

3.3. Styling & UI Components

• Atomic Design Principles: Encourage building components from atoms

(buttons, inputs) to molecules (forms) to organisms (sections).

• Responsiveness: Mobile-first approach for all UI components using Tailwind's

responsive utilities.

• Design System: Gradually build a reusable component library within the

/elements directory, enforcing consistency in look and feel.

• Accessibility (A11y): Prioritize semantic HTML, ARIA attributes when

necessary, and keyboard navigation.

3.4. State Management

• Data Flow: Unidirectional data flow (React's philosophy).

• Server State (React Query):

o Use useQuery for GET requests, useMutation for POST/PUT/DELETE

requests.

o Implement query invalidation strategies (e.g.,

queryClient.invalidateQueries) to keep UI in sync with backend

changes.

o Utilize query caching for performance.

• Avoid Prop Drilling: Use Context API or global state managers for props

needed by deeply nested components.

3.5. Data Fetching & Caching

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• API Client: Use a lightweight HTTP client like axios or native fetch API

wrapped in custom hooks/functions for consistent error handling and

request configuration.

• Error Handling: Implement robust error boundaries and display user-friendly

error messages for API failures.

• Loading States: Provide clear loading indicators for asynchronous operations.

3.6. Error Handling & UI Feedback

• Error Boundaries: Use React Error Boundaries for catching UI rendering

errors.

• Toast Notifications: Implement a consistent notification system (e.g., react-

hot-toast) for success, error, and warning messages.

• Form Validation: Client-side validation using React Hook Form,

complemented by server-side validation messages.

3.7. Performance Optimization

• Code Splitting: Leverage Next.js automatic code splitting.

• Image Optimization: Use next/image component for optimized images.

• Lazy Loading: Lazy load components that are not immediately visible.

• Data Fetching: Optimize data fetching (e.g., select only necessary fields, use

pagination where appropriate).

3.8. Accessibility (A11y)

• WCAG Guidelines: Strive for WCAG 2.1 AA compliance.

• Semantic HTML: Use appropriate HTML5 semantic elements.

• Keyboard Navigation: Ensure all interactive elements are keyboard

accessible.

• ARIA Attributes: Use ARIA roles and attributes judiciously when semantic

HTML isn't enough.

• Contrast Ratios: Ensure sufficient color contrast.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

3.9. Testing Strategy

• Unit Tests: Jest + React Testing Library for individual components and utility

functions. Aim for high component test coverage.

• Integration Tests: Test interactions between multiple components or with

mock APIs.

• End-to-End (E2E) Tests: Cypress or Playwright for critical user flows (e.g.,

login, create page, save page). Initial focus on core flows.

• Linting & Type Checking: Enforce strict ESLint rules (Airbnb/Standard config

adapted for Next.js/TS) and TypeScript checks (tsconfig.json). Pre-commit

hooks for linting.

3.10. Build & Deployment

• Static Assets: Leverage Next.js static asset serving for optimal performance.

• Build Process: Use next build command.

• Environment Variables: All configurations should be managed via

environment variables (.env.local, .env.production).

4. Backend Technical Requirements (Laravel)

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

4.1. Core Stack & Libraries

• Framework: Laravel (LTS version, e.g., v12.x)

• Language: PHP (compatible with Laravel LTS, e.g., v8.3+)

• Database: MySQL (v8.0+)

• ORM: Eloquent

• Package Manager: Composer (v2.x)

• Authentication: Laravel Sanctum (for SPA API token authentication)

• Request Validation: Laravel's built-in Validation.

• API Resources: Laravel API Resources for transforming Eloquent models into

JSON responses.

• Multi-lingual: yes, recommended mcamara Laravel-localization package.

4.2. Project Structure & Design Patterns

• Modular Architecture: Organize code by feature like the existing structure,

feature targeted directory that contains (Models, Views, Controllers, etc…).

• Service Layer (Optional but Recommended): For complex business logic,

introduce a service layer (app/Services) between controllers and models.

• Repository Pattern (Optional): Consider a repository pattern for abstracting

database interactions if complexity demands it.

• SOLID Principles: Adhere to SOLID principles (Single Responsibility,

Open/Closed, Liskov Substitution, Interface Segregation, Dependency

Inversion).

• Dependency Injection: Utilize Laravel's IoC container for dependency

injection.

4.3. API Design Principles

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• RESTful API: Design APIs following RESTful conventions (resources, HTTP

verbs, status codes).

o GET /api/pages - Retrieve all pages.

o GET /api/pages/{slug} - Retrieve a specific page.

o POST /api/pages - Create a new page.

o PUT /api/pages/{slug} - Update an existing page.

o DELETE /api/pages/{slug} - Delete a page.

• Stateless: API should be stateless.

• Content Type: application/json for requests and responses.

• API Versioning: Implement API versioning (e.g., /api/v1/...) from the start to

allow for future changes without breaking existing clients.

• Pagination & Filtering: Implement pagination, sorting, and filtering for

collection endpoints from the beginning.

4.4. Database Interaction

• Migrations: Use Laravel Migrations for all database schema changes.

Rollback capability should be verified.

• Seeders: Use Seeders for populating initial data (e.g., admin users, default

templates).

• Eloquent: Utilize Eloquent for database interactions. Avoid raw SQL queries

unless absolutely necessary (and justified).

• N+1 Problem: Address N+1 query issues using eager loading (with()).

• Transactions: Use database transactions for atomic operations that involve

multiple writes.

4.5. Authentication & Authorization

• Authentication: Laravel Sanctum for API token-based authentication for the

Next.js SPA.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• Authorization: Implement Laravel Gates or Policies for granular access

control (e.g., only authenticated admins can create/update/delete pages).

4.6. Validation

• Server-Side Validation: All incoming request data must be validated on the

server using Laravel's Validation features.

• Custom Validation Rules: Create custom validation rules for complex

validation logic.

4.7. Error Handling & Logging

• Standardized Error Responses: Implement a consistent JSON error response

structure (e.g., {"message": "...", "errors": {...}, "code": ...}).

• HTTP Status Codes: Return appropriate HTTP status codes (e.g., 200 OK, 201

Created, 204 No Content, 400 Bad Request, 401 Unauthorized, 403

Forbidden, 404 Not Found, 422 Unprocessable Entity, 500 Internal Server

Error).

• Logging: Use Laravel's logging facilities (Monolog). Log errors, critical events,

and suspicious activities. Configure logging channels (e.g., daily or stack).

4.8. Security Best Practices

• Input Sanitization: Beyond validation, sanitize user inputs to prevent XSS,

SQL injection (Eloquent helps here).

• CSRF Protection: Laravel handles this by default for web routes; for API,

ensure proper Sanctum token handling.

• Rate Limiting: Implement rate limiting on API endpoints (especially login) to

prevent brute-force attacks.

• CORS: Explicitly configure CORS policies in Laravel (config/cors.php) to allow

requests only from the frontend domain(s).

• Sensitive Data: Never expose sensitive data in API responses or logs. Encrypt

sensitive data at rest.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• Dependency Updates: Regularly update Composer dependencies to mitigate

security vulnerabilities.

• Environment Variables: All secrets and configuration should be managed via

.env files and never committed to Git.

4.9. Performance & Scalability Considerations

• Caching: Utilize Laravel's caching mechanisms (e.g., Redis, file cache) for

frequently accessed, static data.

• Queues: For long-running tasks (e.g., complex page rendering, image

processing), use Laravel Queues.

• Database Optimization: Optimize queries, ensure proper indexing, and avoid

N+1 problems.

• Resource Optimization: Efficient use of server resources.

4.10. Testing Strategy

• Unit Tests: PHPUnit for individual classes, methods, and functions.

• Feature Tests: PHPUnit for testing API endpoints and application features by

making HTTP requests against the application.

• Database Testing: Ensure tests can interact with a clean test database.

• Static Analysis: PHPStan (level 5+) for static code analysis.

• Code Style: Laravel Pint for automatic code style enforcement.

4.11. Deployment

• Server: Apache with PHP-FPM.

• Process Manager: Supervisor for queue workers and other long-running

processes.

• Environment: Production, Development. Each environment must be clearly

defined and segregated.

• Composer Install: Run composer install --no-dev --optimize-autoloader in

production.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• Cache Clear: Optimize Laravel configuration and routes caching (php artisan

optimize).

• Database Migrations: Run migrations and seeders (php artisan migrate --

force).

5. Database Technical Requirements (MySQL)

5.1. Schema Design Principles

• Normalization: Aim for 3NF (Third Normal Form) to minimize data

redundancy, unless denormalization is justified for performance reasons

(with documentation).

• Relationships: Define clear relationships between tables (One-to-One, One-

to-Many, Many-to-Many) using foreign keys.

• Data Types: Use appropriate data types for columns (e.g., VARCHAR with

appropriate length, INT, BIGINT, BOOLEAN, JSON, TEXT).

• JSON Column Usage: Utilize MySQL's JSON data type for storing page

content structure, elements, and their properties as a single blob. This offers

flexibility but requires careful indexing strategies if querying within JSON.

5.2. Naming Conventions

• Tables: Plural, snake_case (e.g., pages, page_elements).

• Columns: Singular, snake_case (e.g., id, user_id, created_at).

• Primary Keys: id (auto-incrementing BIGINT UNSIGNED).

• Foreign Keys: related_table_id (e.g., page_id).

5.3. Indexing Strategy

• Primary Keys: Automatically indexed.

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• Foreign Keys: Should be indexed.

• Frequently Queried Columns: Index columns used in WHERE clauses, JOIN

conditions, and ORDER BY clauses.

• JSON Columns: Consider using functional indexes (MySQL 8+) on specific

paths within JSON columns if querying within JSON is common and

performance critical.

5.4. Backup & Recovery

• Regular Backups: Implement automated daily backups of the database.

• Recovery Plan: Define a clear disaster recovery plan for restoring the

database from backups.

6. Cross-Cutting Concerns

6.1. Environment Management

• .env Files: Use .env files for environment-specific configurations (database

credentials, API keys, app URL).

• Environment Variables: Access sensitive configurations via environment

variables (process.env.VAR_NAME in Next.js, env('VAR_NAME') in Laravel).

6.2. CI/CD Pipeline (Initial Setup)

• Continuous Integration (CI):

o Automated execution of linting, formatting, and unit/feature tests on

every push to a feature branch and every Pull Request.

o Build artifacts generation (Frontend: next build, Backend: composer

install --no-dev).

50 Ali Khalifa Street, New Toril, Mansoura – Dakahlia – Egypt

 +20 (50) 2312898 +20 (15) 57777620

www.it-rays.org Mail: info@it-rays.org

• Continuous Deployment (CD) - Staging:

o Automated deployment to a staging environment upon successful

merge to main.

• Tools (Suggested): GitHub Actions, GitLab CI/CD, or Jenkins.

6.3. Monitoring & Logging (Application Level)

• Backend Logs: Configure Laravel logs to be stored securely and rotated.

Consider centralized logging solutions (e.g., ELK Stack, Datadog) for

production.

• Frontend Logs: Client-side error logging to a service (e.g., Sentry) for

production.

• Performance Monitoring: Basic monitoring of application performance

(response times, error rates) in production.

Thanks for reading…

